
p. 1 

 

Differential impact of learning path based versus  

conventional instruction in science education 

ab
Cindy De Smet, 

 a
Bram De Wever, 

a
Tammy Schellens, 

a
Martin Valcke 

a
Ghent University, Department of Educational Studies, H. Dunantlaan 2, 9000 Ghent, Belgium 

b
University College Ghent, faculty of Education, Health and Social Work, K.L. Ledeganckstraat 8, 9000 

Ghent, Belgium 

 

 

This is an accepted manuscript of an article published by Elsevier in Computers & Education. 

Please respect all copyright laws. 

 

Available online:  

doi:10.1016/j.compedu.2016.04.001  

 

Contact Cindy De Smet : 

cindy@smetty.be 

Twitter : @drsmetty 

https://be.linkedin.com/in/smetty 

  

http://dx.doi.org/10.1016/j.compedu.2016.04.001
mailto:cindy@smetty.be


p. 2 

 

Abstract 

Learning paths have the potential to change the teaching and learning interaction between teachers and 

students in a computer-supported learning environment. However, empirical research about learning paths is 

scarce. Previous studies showed that the low adoption of learning paths can be linked to the lack of 

knowledge on the part of teachers about learning path design and its implementation. In the present study, 

which was undertaken in the context of a biology course in secondary education, 496 14- to 15-years old 

secondary school students in Flanders were assigned to either learning path based or conventional 

instruction during classroom activities. The aim was to analyze the differential impact of the instructional 

formats on learning outcomes, considering variations in group setting and group composition. Given the 

focus on science learning, gender was also considered. Multilevel analysis was applied, and the results show 

empirical evidence for superior performance for both boys and girls in the learning path condition as 

compared with that in the conventional condition. In addition, when girls collaborate, they perform best 

within same-sex groups, whereas boys achieve better results in mixed-gender groups. The implications of 

the findings are important for tackling the gender gap in science learning. The findings can lead to 

guidelines for teachers who want to implement learning paths within an optimal learning environment 

design. 

 

Keywords: secondary school, learning management system, learning path, collaborative learning, science 

education 

 

Highlights: 

 This study investigates the impact of instructional methods on learning outcomes. 

 Special attention was paid to group setting, group composition, and gender. 

 Evidence was found for superior performance in studying via a learning path. 

 Boys performed better in mixed-gender groups, and girls in same-sex groups. 
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Introduction 

In a study of 376 teachers from 70 secondary schools, De Smet and Schellens (2009) observed that 96% of 

the participating schools used a learning management system (LMS), but only 10% of the participating 

teachers actively used the learning path module. They concluded that, despite the high adoption level of 

LMSs within schools, the low adoption rate of learning paths suggests that teachers are unfamiliar with how 

learning paths can be designed and implemented. 

As a result, De Smet, Schellens, De Wever, Brandt-Pomares, and Valcke (2014)  studied the design and 

implementation of learning paths in an LMS. The impact of optimizing a learning path with guidelines 

derived from the cognitive theory of multimedia learning (CTML; Mayer, 2003) was studied within the 

context of a biology course. In addition, individual versus collaborative use and gender differences were 

considered when examining the impact on learning outcomes. It was found that students provided with a 

learning path optimized with the CTML guidelines, especially when working alone, outperformed students 

in other conditions. However, the impact of collaborative learning was less obvious, more specifically for 

females. These results demonstrated that collaboration in a learning path does not automatically lead to 

better learning. 

De Smet et al. (2014) described a learning path as “the LMS functionality to order a number of learning 

objects in such a way that they result in a road map for learners. Within a learning path, learning steps are 

structured in a general way (as a navigation map or a table of contents) or in a very specific sequenced way 

(e.g., ‘complete first step 1 before moving on to step 2’)” (p. 2). The most important building blocks of a 

learning path are the learning objects. Kay and Knaack (2007) defined them as “interactive web-based tools 

that support the learning of specific concepts by enhancing, amplifying, and/or guiding the cognitive 

processes of learners” (p. 6). Learning paths can be created with authoring tools (e.g., eXe and Xerte) or can 

be programmed by software developers. 

This paper aims to support and extend previous learning path research. Building on the observation that 

optimizing learning paths based on the CTML guidelines was beneficial for student learning outcomes, we 

decided to adopt this design approach for a follow-up study. In addition, we build on research about 

collaborative learning. We expect students studying a learning path in a collaborative way to attain 

significantly higher learning outcomes as compared with students learning individually. However, previous 

studies are less conclusive as to the beneficial effect of collaborative learning. Possible causes are group 

composition (Resta & Laferrière, 2007), the role of gender within group composition (Johnson & Johnson, 

1996), and the tendency of women to be less active in certain group settings (Felder, Felder, Mauney, 

Hamrin, & Dietz, 1995). This brings us to the central research problem: do learning paths have a beneficial 

impact on learning outcomes when students learn in a collaborative way? We especially considered the role 

of gender and group composition. Since most teachers have not yet adopted learning paths (De Smet & 

Schellens, 2009), we implemented a design wherein conventional instruction is the control group and 

learning path based instruction is the experimental group. 

In the next sections, we first present the theoretical base underpinning the hypothesized differences between 

conventional instruction and learning paths, the rationale in relation to collaborative versus individual study 

based on learning paths, and the impact of group composition. We also focus on gender because it is of 

prime importance when investigating collaborative learning (as discussed above) and also because our study 

is set up in the domain of science learning, where it is considered a key variable. 
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Theoretical and empirical framework 

Learning paths and their potential to promote learning performance 

The present study focuses on the impact of learning paths. The latter represent a specific functionality, made 

available via LMSs (also referred to as virtual learning environments, digital learning environments, course 

management systems, or electronic learning environments). LMSs give educators tools for creating an 

online course website and provide access to enrolled students (Cole & Foster, 2007). Most LMSs provide a 

number of specific tools and functionalities to support learning. Dabbagh and Kitsantas (2005) distinguished 

4 categories of web-based pedagogical tools: collaborative and communication tools (e-mail, discussion 

forums, and chat tools); content creation and delivery tools (upload course content and learning paths); 

administrative tools (course information, functions, interactions, and contributions); and assessment tools 

(tools to post grades etc.).  

From a theoretical perspective, the potential benefits of learning paths are built on (1) the assumptions 

related to the CTML and (2) the assumptions related to instructional technology conceptions.  

Most learning objects in a learning path have various functionalities and features (e.g., content, context, 

appearance, animation, behavior, and structure); therefore, the rationale for using learning paths is heavily 

based on their multimedia nature. CTML, as postulated by Mayer (2001, 2003), represents a framework for 

determining the instructional design of multimedia learning materials and presents practical guidelines for 

creating such materials. For instance, the audiovisual elaboration of certain learning objects builds on the 

dual channel assumption that states that learners have different channels (auditory versus visual) that allow 

them to simultaneously process complex knowledge (Baddeley, 1992, 1995; Paivio, 1978, 1991). 

Exploitation of these different channels allows the study of increasingly complex learning content. CTML 

also stresses the active learning assumption (Mayer, 2005). The (interactive) learning objects guarantee that 

learners are actively engaged in processing a multimedia environment. The cognitive processes that are 

involved select (visual/audio), organize (mental representation), and integrate (visual, audio, and prior 

knowledge). The latter processes are consistent with evidence-based cognitivist learning principles that 

foster schema development and subsequent learning performance (see Marzano, Pickering, & Pollock, 

2001). 

The sequencing of learning objects along a “path” can, theoretically, also be linked to “programmed 

instruction” principles as previously defined by Skinner and to principles found in the “teaching machines” 

of Pressey (1927, 1960) and Skinner (1954, 1958). Both programmed instruction and teaching machines 

reflect a systematic build-up of learning materials by following carefully defined steps. Moving from one 

step to the other depends on successful mastery of the previous step. Skinner refers to the “operant 

condition” as the mechanism for grounding learning. Emurian (2005) concluded that step-by-step 

instructional design as found in programmed instruction is especially helpful when students access a new 

knowledge domain “because it provides study discipline”, guarantees “structured rehearsal”, and requires 

learners to attain a high achievement level. McDonald, Yanchar, and Osguthorpe (2005) added that 

programmed instruction was found to be most effective when teachers did not use it rigidly but rather 

combined it with other instructional methods and adapted the provided materials.  

In their meta-analysis of 48 studies comparing the final examination scores of secondary school students in 

mathematics and science, Kulik, Bangert, and Williams (1983) found 39 studies in favor of computer-based 

teaching and only nine for conventional instruction. Li and Ma (2010) reported similar findings in primary 
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education for teaching mathematics, and Christmann, Badgett, and Lucking (1997) and Jenks and Springer 

(2002) reported similar findings in secondary education. 

However, when comparing computer-based instruction with conventional instruction, several authors warn 

of potential pitfalls. While the learning paths we created for this research are carefully designed with 

sequenced instruction, this is most probably not the case for the conventional instruction condition (Jenks & 

Springer, 2002; Lockee, Moore, & Burton, 2004). Other factors that can be responsible for the apparent 

success of computer-based instruction are the novelty of the medium (Fletcher-Flinn & Gravatt, 1995), the 

practice of engaging only one teacher or two different teachers for both the experimental and the control 

condition (Clark, 1983), or the study duration (Cohen, Ebling, & Kulik, 1981). 

Waite, Wheeler, and Bromfield (2007) studied the implications of individual differences for teaching and 

learning through information and communications technology (ICT). Several of their observations were 

gender related, among them that girls engage more in socially interactive activities (helping others, being 

involved in discussions, seeking help, etc.) than boys. As a result, the authors suggest appropriate 

interventions should be made to meet the individual’s learning needs, and attention should be paid to the 

differences in pupils’ response to ICT. In their study, the authors created more structure in the learning 

materials, resulting in more guidance and freeing the learner of the obligation to create a structure 

himself/herself. They also believe that students benefit from working together as “a different approach to 

ICT use would allow them to experience beyond their capabilities or inclination” (p. 95). In addition, Lee, 

Chen, and Chrysostomou (2009) emphasized the importance of individual differences as an essential part of 

the development of web-based learning. In this respect, considering the findings of Waite, Wheeler, and 

Bromfield (2007) and Lee, Chen, and Chrysostomou (2009), the current study adds to the literature as it 

examines individual differences (i.e., gender) via web-based learning (i.e., prestructured learning path) in an 

individual or collaborative setting.  

Collaborative learning and group composition 

In this study, we adopt the term “collaborative learning” to refer to the engagement of all participants in 

solving a problem together (Roschelle & Teasley, 1995). Research among secondary school students on 

short-term collaboration shows that collaborative learning mostly leads to better problem solving and higher 

learning outcomes as compared with individual learning (Barron, 2003). When designing and researching 

the present online collaborative learning setting, we built on the considerable amount of research available in 

the field of computer-supported collaborative learning (CSCL). The empirical evidence stresses that placing 

learners in a group does not guarantee spontaneous collaboration (Cohen, 1994), productive interactions 

(Barron, 2003), or effective learning behavior (Soller, 2001).  

Dillenbourg, Baker, Blaye, and O’Malley (1995) emphasized variables that determine the conditions under 

which collaborative learning is most effective. Among others, they emphasize group composition as the 

most studied variable, in addition to task characteristics, the context of collaboration, and the medium 

available for communication. Empirical studies focusing on group composition show that pairs are more 

effective than larger groups (Dillenbourg, 1996). This is consistent with Trowbridge (1987), who three 

decades ago already stated that students work by preference in pairs and in groups of three. Smaller groups 

enable students to fully participate and establish group cohesion (Fischer, Kollar, Stegmann, & Wecker, 

2013). Kobbe et al. (2007) stressed the advantage of attaining more effective interaction in smaller groups. 

Employing collaborative learning in a computer-based setting introduces additional levels of complexity. 

The asynchronous nature of online collaborative environments raises questions about whether students 
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possess the critical knowledge and skills to guide their task solution process (Fischer et al., 2013). Therefore, 

some authors propose using collaboration scripts to shape the way learners interact with one another (Kobbe 

et al., 2007). Kollar, Fischer, and Hesse (2006) and Kollar, Fischer, and Slotta (2007) made a distinction 

between “internal” (internalized by the learner) collaboration scripts and “external” collaboration scripts 

(e.g., induced by a teacher or by instructions on a website). Weaknesses in the mastery of internal 

collaboration scripts can be compensated for by providing learners with explicit external collaboration 

scripts to guide them successfully in a collaborative situation. 

Kollar, Fischer, and Hesse (2006) proposed 5 minimum characteristics of scripts in a CSCL setting: they 

focus on a clear objective, they engage in particular learning activities, they sequence required actions, they 

specify and distribute roles, and they contain a type of representation of the instructions to be presented to 

the learners. In the present study, we adopt explicit external collaboration scripts—called “teacher 

scenarios”—to guide the collaborative learning process. 

Gender 

The present study takes place within the setting of science, technology, engineering, and mathematics 

(STEM) education. Although STEM education is considered important in view of future career paths and 

socioeconomic development, several countries have reported an alarming lack of interest in STEM-related 

disciplines among students (European Commission, 2004, 2006; Organisation for Economic Co-operation 

and Development [OECD], 2007, 2008; US Department of Education, 2007; National Governors 

Association, 2007). A recurrent problem within the STEM field is the underrepresentation of females 

(European Commission, 2004, 2012). The National Centre on Time & Learning (2011) indicated that 

women (about 50% of the overall US population) only constituted 27% of the US science and engineering 

workforce in 2007. 

This gender gap is in sharp contrast to the latest Programme for International Student Assessment (PISA) 

tests (mathematics) wherein 15-year-old girls matched or even outnumbered their male counterparts in the 

top-performing countries (OECD, 2013), and to the observation that girls are more successful in school as 

they obtain higher grades and are less likely than boys to repeat a year (European Commission, 2006). 

Similar results were found in a recent meta-analysis by Voyer and Voyer (2014) that examined 369 research 

samples, leading to the conclusion that females achieve higher marks for all course content areas. The 

European Commission (2012) suggested the following causes of the gender gap: stereotypes found in 

children’s books and school manuals; gendered attitudes of teachers, and gendered advice and guidance on 

the courses students should take; and different parental expectations regarding the future of girls and boys.  

Linking the issue of gender to the present study, we should bear in mind that some of our conditions under 

study, that is, group setting and group composition, are believed to influence learning outcomes based on 

gender. Resta and Laferrière (2007), referring to Cranton (1998), Johnson and Johnson (1996), and Webb 

and Palincsar (1996), underscored the heterogeneous nature of groups due to a difference in participants’ 

gender, status, culture, or expertise. In this view, heterogeneous groups would result in more productive 

collaborative learning and are hypothesized to present learners with a broader range of perspectives. 

However, when focusing on gender, Felder et al. (1995) reported that females in mixed groups can 

experience disadvantages: they were frequently interrupted by males, felt uncomfortable when discussions 

arose, and in general felt that their contributions were undervalued. Curşeu, Schruijer, and Boroş (2007) and 

Curşeu and Sari (2013), building on the group diversity literature, suggested that gender variety has a 

positive outcome on group cognitive complexity and that mixed-gender groups achieve better results. 
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However, group diversity can also be differentiated as gender separation and gender disparity, which are 

known to result in negative influences on group effectiveness. 

Slotta and Linn (2009) found that web-based collaborative inquiry seems to be helpful in developing and 

maintaining positive attitudes toward science and science instruction. Raes, Schellens, and De Wever (2014) 

showed that low achievers, and more specifically low-achieving girls, benefited from this type of 

intervention. In particular, the ability to discuss in small groups was believed to be beneficial. As mentioned 

earlier in this paper, Resta and Laferrière (2007) pointed out several studies supporting the claim that 

heterogeneous groups in terms of participants’ gender are more productive (Cranton, 1998; Johnson & 

Johnson, 1996; Webb & Palincsar, 1996). In addition, Curşeu, Schruijer, and Boroş (2007) and Curşeu and 

Sari (2013) found that gender variety has a positive outcome on group cognitive complexity and that mixed-

gender groups achieve better results, whereas Felder et al. (1995) reported that females in mixed groups can 

be at a disadvantage. 

Research design 

Research question and research hypotheses 

This study investigates the learning outcomes of secondary school students who took a biology course either 

via conventional instruction or via a learning path and worked individually or collaboratively. Special 

attention is paid to group composition and gender. The following general research question guided our 

study: what is the differential impact of studying through a biology learning path versus that through a 

conventional instructional format, with consideration for a collaborative or individual learning approach and 

variations in group composition? Building on the available theoretical and empirical base, the following 

hypotheses can be linked to this research question, both on post-test and retention test: 

(H1): In the individual setting, both males and females studying via a learning path (LP) will obtain 

significantly better learning outcomes than students following the biology course via conventional 

instruction (Conv). 

H1a: BoyLP scores higher than BoyConv  

H1b: GirlLP scores higher than GirlConv  

(H2): Both males and females studying by means of a learning path in a collaborative setting will attain 

significantly higher learning outcomes as compared with students studying by means of a learning path on 

an individual basis. 

H2a: Bin2BoysLP (a boy in a same-sex collaborative group) scores higher than BoyLP  

H2b: Gin2GirlsLP (a girl in a same-sex collaborative group) scores higher than GirlLP  

H2c: BinMix (a boy in a mixed collaborative group) scores higher than BoyLP  

H2d: GinMix (a girl in a mixed collaborative group) scores higher than GirlLP  

(H3): Mixed-gender groups perform higher than same-sex groups.  

H3a: BinMix scores higher than Bin2BoysLP 

H3b: GinMix scores higher than Gin2GirlsLP 

Considering the empirical data in relation to gender and STEM, we put forward a fourth hypothesis: 
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(H4): Girls perform higher than boys, independent from the instructional method used. 

H4a: GirlConv scores higher than BoyConv 

H4b: GirlLP scores higher than BoyLP 

H4c: Gin2GirlsLP scores higher than Bin2BoysLP 

H4d: GinMix scores higher than BinMix  

 

Participants 

Secondary education in Flanders comprises six consecutive years of study, starting at the age of 12. Fifteen 

teachers (N = 15, 5 males, 10 females), working in 13 different secondary schools, agreed to participate. Six 

of them had prior experience with learning path research (De Smet et al., 2014). Seven extra secondary 

schools were selected in collaboration with a GO! staff member. GO! is one of the three main educational 

networks in Flanders and comprises 15% of secondary school education in Flanders. The GO! network is 

financed by the government but functions independently of the Flemish Ministry of Education. In this way, 

every educational network has the autonomy to develop its own curriculum (including the subject content, 

competencies, skills, and learning goals). However, within an educational network, the curriculum within 

the selected classes and schools is identical. 

Thirty-two classes were involved in the study. All students enrolled in these classes (N = 496, 219 males and 

277 females) participated in the consecutive activities during the study. On average, students were 15 years 

old. Figure 1 shows the participants flow chart. 

Belgium, and Flanders in particular, is one of the most urbanized countries in the world (United Nations 

World Populations Prospects, 2011). Consequently, all participating schools are located in an urban area. 

Prior to the study, informed consent to use the data for research purposes was obtained through the different 

schoolteachers. 

 

Figure 1. Participants flow chart. 

The biology “Bacteria” learning path 

A prior study on the design of learning paths by De Smet et al. (2014) showed that a learning path 

comprising multimedia learning objects, which are based on text, schemes, pictures and web-based exercises 

and optimized by applying Mayer’s (2003) multimedia guidelines, guaranteed superior learning outcomes. 
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Given the positive evaluation of this experimental learning path about “bacteria collection and growth” by 

teachers and students, the same set of materials was used for the present study. 

Figure 2. Images on the bacteria topic from the learning path: picture gallery (above), multiple-choice 

questions (left), and a schema (right). 

During our prior study, teachers recommended several small improvements, mostly spelling corrections and 

suggestions on a content or exercise level. A recently graduated biology teacher, who was also involved in 

the first study, was hired to adapt the old learning path according to the teacher’s feedback. In the last phase, 

10 preservice teachers majoring in biology reviewed our freshly adapted learning path to help create the 

final version.  

Individual versus collaborative study of the learning paths 

In this study, students worked either alone or in pairs. As noted by Fischer, Kollar, Stegmann, and Wecker 

(2013), research on collaborative learning stresses the need to adopt internal or external collaboration scripts 

(see also Kollar, Fischer, & Slotta, 2007). As defined by Kollar, Fischer, and Hesse (2006), scripts contain a 

learning objective, a representation of the learning instructions, a series of learning activities, and a clear 

sequencing of the required actions.  

External collaboration scripts in the form of teacher scenarios were presented to the learners in this study. 

These teacher scenarios were adopted for several additional reasons. First, Flemish teachers (preservice 
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teachers and in-service teachers) are accustomed to working with lesson preparation templates; therefore, the 

teacher scenarios were based on these templates. Second, we drew on empirical evidence about these teacher 

scenarios from our previous research (De Smet et al., 2014). Third, the scenarios guarantee the comparable 

and controlled nature of the teaching interventions in the different research conditions and settings. Various 

teacher scenarios were available depending on the research condition (learning path/traditional and 

collaborative/individual); however, they did not result in differences in the content to be studied about 

bacteria.  

Four teacher scenarios covering the bacteria topic, one for each lesson (50 min), were created and were 

based on the official GO! biology curriculum. Each scenario comprised a timeline, learning goals, learning 

content, teacher tasks, and learner activities. Scenarios in the conventional and the learning path condition 

only differed with respect to teacher tasks and learner activities. The control group only received a course on 

paper that was distributed among the students, whereas learners in the experimental condition had access to 

a computer, either individually or collaboratively. As a result, all students were simultaneously offered the 

same content, but the instructional activities were adapted to the medium that was being used. 

Research instruments: learning performance 

To test the knowledge of the students, a pretest, a posttest, and a retention test were administered to the 

students. A recently graduated biology teacher created a learning objective matrix. For each row, the table 

contained a particular knowledge element about “bacteria collection and growth” taken from the official 

biology curriculum. In the subsequent columns, one or more questions were formulated that tested a 

different level along the knowledge dimension of Bloom’s revised taxonomy (Krathwohl, 2002): factual 

knowledge, conceptual knowledge, and procedural knowledge. The metacognitive knowledge level was not 

considered in this study.  

This procedure resulted in the development of at least five questions for 15 learning objectives, and an item 

test bank of 97 test items (multiple-choice questions with four possible answers) was created. This large 

number of questions enabled the researcher to develop different parallel test versions to be used at different 

stages in the study. To check the quality of the questions, ten preservice teachers, under the supervision of 

their lecturer, reviewed, discussed, and adapted questions when necessary.  

All questions, building on the learning objective matrix, were used to develop three parallel test versions. 

Finally, three classes, comprising 63 students participated in a trial phase. This trial enabled the use of item 

analysis to improve the quality and accuracy of the items. A combination of item difficulty (p-value) and 

item discrimination (point-biserial correlation; PBS) was considered. Items with p-values above 0.90 and 

PBS values near or less than zero were removed from the tests (Division of Instructional Innovation and 

Assessment, University of Texas at Austin, 2007). As a result, some questions were eliminated from the 

original 97 questions, whereas others were adapted with the aim of obtaining the final test item bank that 

comprised 85 questions. This item test bank was used to develop six parallel sets of items (A, B, C, X, Y, 

and Z), comprising 14 questions each. Next, these sets of items were paired in such a way that each 

individual series reflected an item overlap with a parallel version: test 1 (XY), test 2 (YZ), test 3 (ZA), test 4 

(AB), test 5 (BC), and test 6 (CX). Tests were randomly assigned to all 32 classes. For example, class 7 

received test 1 as a pretest, test 3 as a posttest, and test 5 as a retention test, whereas class 8 received test 3 as 

a pretest, test 5 as a posttest, and test 1 as a retention test, and so on.  
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This approach was applied to make sure that the difficulty levels of the pre-, post-, and retention tests were 

exactly the same and to correct for potential bias (remembering answers, an enlarged focus on certain 

elements, etc.). 

 

Figure 3. Creation process of the learning paths and the knowledge tests. 

Research procedure 

Based on the independent variables, instructional method, collaborative/individual setting, and group 

composition (only males, only females, and male/female), eight research conditions were established in this 

study. In addition, the gender of each respondent was also considered in relation to each research condition 

(see Table 1). 

Table 1. Overview of research conditions and number of participants across conditions. 

 

 
Individual   Collaborative 

 
Conventional Learning path  Learning path 

 

BoyConv GirlConv BoyLP GirLP 
 

Bin2BoysLP Gin2GirlsLP 
 

BinMix GinMix 

Males 27 0 97 0  66 0  28 _ 

Females 0 55 0 107  0 88  _ 28 

Total 27 55 97 107  66 88  28 28 
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Note: Conv = Conventional Instruction, LP= Learning Path, Bin2BoysLP = a boy in a same-sex 

collaborative group, Gin2GirlsLP = a girl in a same-sex collaborative group, BinMix = a boy in a mixed 

collaborative group and GinMix = a girl in a mixed collaborative group 

 

Complete classes (N = 32) were assigned to either the conventional instruction condition or the learning path 

condition. Within the learning path condition, students were assigned at random to work either 

collaboratively or individually. All teachers in the learning path condition received a box containing a 

research guideline, a comprehensive teacher scenario, the time schedule, two versions of the learning path 

(HTML and SCORM), and all the tests (on paper). During an oral explanation, the researcher and the 

teacher discussed the proposed timing, the workflow, and technical information concerning learning paths 

(and integration within their LMS). The researchers’ e-mail address and emergency phone number were 

provided, in case the teachers needed information or assistance. Only a few minor technical and procedural 

questions emerged.  

Within the learning path condition, we asked that all teachers assign their students randomly to individual 

work or collaborative work in pairs. As to the pairs, students were randomly assigned to either a mixed-

gender or a same-sex group. The pairs were established for the entire duration of the study (4 lessons). A 

form was provided to the teachers to document student details: name, gender, group setting (individual or 

collaborative), name and gender of the other group member when working in pairs, and presence or absence 

during each consecutive session. It was mandatory that all lessons in the experimental condition take place 

in the computer class. 

Classes assigned to the conventional research condition did not receive additional materials. Teachers 

worked with their traditional textbook and their traditional learning activities but did so based on the same 

learning objectives and time frame as the teachers/classes in the experimental condition. As discussed above, 

this was guaranteed by the detailed curriculum all teachers within an educational network were following. 

None of these classes were involved in collaborative work. 

All introductory lessons of all teachers were observed by a researcher for control purposes. In addition, in 

two classrooms, all class activities were recorded on tape with a digital camera and all PC activities with 

screencasting software. 

Statistical analysis 

Dillenbourg, Baker, Blaye, and O’Malley (1995) stated that research on collaborative learning can be based 

on either the individual or the group as the unit of analysis. The present research focuses on the learning 

outcomes of individual learners; therefore, we do not focus on group scores as the unit of analysis, but rather 

on data from individual group members. Kirschner, Paas, and Kirschner (2009) argued that the latter leads to 

“more informative and straightforward results” than conclusions based on group performance. 

Our data reflect a hierarchical structure (i.e., students in classes from different schools were offered 

knowledge tests at three consecutive times). It might, therefore, be concluded that individual observations 

are not completely independent because students share a common history and experiences (Hox, 1994). 

Ignoring this structure could result in violating the assumptions of regression analysis, as the knowledge 

scores of individual students enrolled in the same classes might be interdependent and thus lead to the 

school level and the class level being overlooked. Concerning this, Diez-Roux (2000) and Nezlek (2008) 
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suggested that multilevel modeling be applied as an alternative statistical approach. Goldstein (2003) stated 

that the multilevel approach is especially important in the case of repeated measures data because there are 

very few level 1 units (tests) per level 2 units (students). He also added that, in general, multilevel is even 

more conservative than a traditional regression analysis in which the presence of clustering is ignored 

(Goldstein, 2003). 

We developed the multilevel model based on Van Der Leeden (1998), who considers repeated measures as a 

hierarchical structure, as these measurements are nested within individuals. Following this rationale, our 

knowledge tests are defined as the first level, students as the second level, classes as the third level, and 

schools as the fourth level. MLwiN software (Centre for Multilevel Modelling, University of Bristol) was 

used to analyze the hierarchical data structure (Nezlek, 2008; Rasbash, Steele, Browne, & Goldstein, 2009). 

Since we did not assign entire classes to conditions, all variables (i.e., instructional format, 

collaborative/individual setting, group composition, and gender) are situated at the student level. Class- and 

school-level variances were estimated to control for hierarchical nesting and interdependency. The lowest 

level was the measurement occasion (pretest, posttest, and retention test), allowing us to compare changes in 

students’ knowledge. 

We followed a three-step procedure to analyze the effects of four independent variables (instructional 

method, collaborative/individual setting, group composition, and gender) on the dependent variable, that is, 

learning outcomes. The subsequent models that were tested following this procedure are summarized in 

Table 4 (in annex). To start, we tested the four-level intercepts null model (Table 4, Model 0). The next step 

was to create the conceptual null model (Table 4, Model 1) that serves as the baseline model. This 

unconditional null model (without any predictor variables) incorporates the overall pretest, posttest, and 

retention scores from all students. The third step implied the addition of the eight research conditions in the 

fixed part of the model, allowing cross-level interactions between students, class, and school characteristics. 

This resulted in Model 2 (Table 4). 

We first report on the model that was built, the descriptives, and a detailed overview of the multilevel 

analysis results. Next, we test the four hypotheses based on the findings. 

Multilevel analysis results 

Model building 

We present the analysis results following the three-step procedure described above. The first model (model 0 

in Table 4) is a four-level random intercepts null model, with measurement occasions (level 1) hierarchically 

nested within students (level 2) who are clustered within classes (level 3) of several schools (level 4). As can 

be seen in the random part of this model, the variances in measurement occasion, student, and class level are 

significantly different from zero: 2.43% of the total variance in scores is situated at school level (χ² = 0.33, 

df = 1, p = .56), 16.46% at class level (χ² = 8.39, df = 1, p = .004), 13.18% at student level (χ² = 26.65, df = 

1, p < .001), and 67.93% of the variance arises from differences at the measurement occasions (χ² = 445.32, 

df = 1, p < .001).  

The second model (Model 1 in Table 4) is a compound symmetry model. This model is a random intercept 

model with no explanatory variables except for the measurement occasions (Snijders & Bosker, 1999). The 

compounds symmetry model allows us to compare the average score of all students at the pretest, the 

posttest, and the retention test, and thus, it allows us to explore whether a learning effect occurs throughout 
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time. The intercepts represent the average score at the pretest (i.e., the reference category) against which the 

parameters of the posttest and the retention test can be contrasted. The average score of all students at the 

pretest is 38.67, at the posttest is 45.07 (38.67 + 6.40), and at the retention test is 46.39 (38.67 + 7.72). This 

compound symmetry model fits the data better than the four-level null model and shows that, without 

considering a particular research condition, but by controlling for the nested data structure, students score 

significantly higher on the posttest as well as the retention test as compared with that on the pretest. The 

difference in deviance of both models can namely be used as a test statistic having a chi-squared 

distribution, with the difference in the number of parameters as degrees of freedom (Snijders & Bosker, 

1999), resulting in an indication of a significantly better fit (χ² = 115.23, df = 2, p < .001). 

In our third model (Model 2 in Table 4), eight research conditions based on the theoretical framework 

(considering instructional format, collaborative/individual setting, group composition, and gender) were 

entered into the model as potential explanatory variables. This results in a significantly better fit of the 

model (χ² = 1271.60, df = 21, p < .001). The results of this model, that is, the average at the pretest, the 

posttest, and the retention test for each of the conditions are summarized in Table 2, including the 

significance levels of the differences between these averages. The reference category (BoyConv) is the score 

of a male student, who is working individually and following the “bacteria topic” via conventional 

instruction. When looking at the results of Model 2 (Table 4 in appendix), we found no significant 

differences between the conditions at the pretest. This finding is logical and in line with what we expected, 

as the pretest was administered before any of the interventions took place. Nevertheless, we found 

significant differences between groups and between knowledge tests. We shall, therefore, highlight the key 

findings of the research and focus on the significant results.  

Student learning performance  

 

Table 2. Knowledge scores on pre-, post- and retention test and significant differences between groups (left) 

and differences between knowledge tests (right).  

 

Knowledge scores and significant 

differences between groups 

 significant differences 

between tests 

  Pre Post Retention  PrePost PostRet PreRet 

BoyConv 37.22 41.36
a
 37.00

fghi
  >.05 >.05 >.05 

GirlConv 37.72 45.38 41.84
j
  <.05 >.05 <.05 

BoyLP 38.81 44.16
b
 45.09

fk
  <.05 >.05 <.05 

GirlLP 38.04 44.15
c
 49.88

gjklm
  <.05 <.05 <.05 

Bin2BoysLP 39.83 41.81
d
 43.18

ln
  >.05 >.05 >.05 

Gin2GirlsLP 37.22 44.66
e
 48.33

hno
  <.05 <.05 <.05 

BinMix  43.15 51.41
abcde

 49.14
ip

  <.05 >.05 >.05 

GinMix 40.38 46.88 41.48
mop

  <.05 >.05 >.05 

 

Note: Conv = Conventional Instruction, LP= Learning Path, Bin2BoysLP = a boy in a same-sex 

collaborative group, Gin2GirlsLP = a girl in a same-sex collaborative group, BinMix = a boy in a mixed 

collaborative group and GinMix = a girl in a mixed collaborative group. 

Same superscripts denote significant differences between conditions within a test (p <.05). No significant 

differences were found between the conditions on the pre-test. Significant differences between 

knowledge tests (p < .05) are in bold. 
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To report the findings on our hypotheses, we draw on Table 2, which displays the knowledge scores on the 

pretest, posttest, and retention test; the differences between the groups; and the differences between the 

knowledge scores.  

First, it can be seen in the table that the pretest scores are close to one another (all between 37.22 and 43.15). 

However, differences become more distinct when looking at the posttest scores (between 41.36 and 51.41) 

and the retention test scores (between 37.00 and 49.88). Second, Table 2 indicates (with common 

superscripts) which groups are significantly different from each other on the posttest and the retention test. 

Third, when calculating the differences between tests, we note that the learning slopes (i.e., the increase or 

decrease between test scores at two different measurement occasions) show variation. When observing the 

slopes between the pretest and the posttest, we observe they are all increasing. Only the slope for 

Bin2BoysLP stands out as it seems to increase less. Between the posttest and the retention test, four slopes 

are increasing and four are decreasing.  

Hypothesis testing 

Table 3. Hypothesis testing of learning performance on post- and retention test.  

 

Hypothesis testing Results 

H1a Supported on retention test   

H1b  Supported on retention test 

H2a No support  

H2b  No support  

H2c Supported on post-test   

H2d The inverse was true on retention-test 

H3a Supported on post-test   

H3b The inverse was true on retention test 

H4a No support 

H4b Supported on retention test 

H4c Supported on retention test 

H4d The inverse was true on retention-test 

 

Given our first hypothesis (H1), we expected that students studying via a learning path (BoyLP, GirlLP) 

would attain higher learning outcomes than students in the conventional condition (BoyConv, GirlConv). 

Table 2 seems largely to confirm this hypothesis. When we calculate the differences between the scores on 

the posttest and the retention test, we can see that only the differences on the retention test were found to be 

significant. Based on these scores, we can conclude that both hypotheses H1a for boys and H1b for girls 

were confirmed on the retention test: studying via a learning path leads to better learning outcomes than 

conventional instruction.  

We hypothesized (H2) that students who study learning paths in a collaborative way would outperform 

students within an individual setting. However, as can be observed in Table 2, no significant differences on 

both posttest and the retention test were found between Bin2BoysLP and BoyLP (H2a) and between 

Gin2GirlsLP and GirlLP (H2b), and thus, as a result, these hypotheses can be rejected. When controlling for 

hypothesis H2c, we notice that a boy in a mixed-gender condition (BinMix) scores better than a boy in the 

individual condition (BoyLP) on both posttest and the retention test; however, the difference between 
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BinMix and BoyLP was only significant on the posttest. When testing for hypothesis H2d, we observe a 

significant difference on the retention test, but the inverse of what we supposed in H2d: girls working 

individually on a learning path perform better than girls in mixed-gender groups. This leads to the 

observation that the presence of a girl is beneficial for boys in a mixed-gender group, whereas girls perform 

better when working alone. 

Our third hypothesis (H3) predicts that group composition plays an important role. More specifically, 

mixed-gender groups (BinMix and GinMix) are expected to perform better than learners in same-sex groups 

(H3a for Bin2BoysLP and H3b for Gin2GirlsLP). Table 2 indicates that boys in the mixed-gender group 

score better than boys in the same-sex group on both the posttest and the retention test, but only the 

difference on the posttest was found significant. As a result, H3a is accepted on the posttest. The results 

show a somewhat different picture for girls. When calculating the difference for girls between GinMix and 

Gin2GirlsLP, we found a significant difference on the retention test. But again, this leads to the inverse of an 

original hypothesis (H3b) and to the unexpected conclusion that girls who work collaboratively in same-sex 

groups in the learning path condition perform better than girls in the mixed-gender groups. In other words, 

the data seems to suggest that mixed-gender groups are more beneficial for males, while females score better 

in same-sex groups. 

Following our fourth hypothesis (H4), we expect that girls perform better than boys, independent from the 

instructional method used. When comparing the results to check for H4a between GirlConv and BoyConv, 

we found no significant differences on the posttest and the retention test, and thus, we reject hypothesis H4a. 

Girls in the individual learning path condition (GirlLP) perform better on the retention test as compared with 

boys working individually with a learning path (BoyLP). The difference was significant, leading to the 

acceptance of hypothesis H4b on the retention test. A similar result on the retention test led to the 

acceptance of H4c, where we notice that girls working collaboratively in same-sex groups (Gin2GirlsLP) 

achieve better results than boys in same-sex groups (Bin2BoysLP). This was not the case for H4d, as girls in 

mixed-gender groups (GinMix) score lower than boys in a mixed-gender group (BinMix) on both the 

posttest and the retention test. A significant difference can be noticed on the retention test, or in other words, 

the inverse of hypothesis H4d is true. These data suggest that in the learning path condition, girls outperform 

boys when working individually or collaboratively in same-sex groups. 

To conclude, we found evidence that both boys and girls in the individual setting score better in the learning 

path condition as compared to the conventional condition. Second, we found no support for the beneficial 

impact of collaborative learning, except for boys in a mixed-gender group. Third, mixed-gender groups are 

more beneficial for males (on the posttest), whereas females score better in same-sex groups (on the 

retention test). Fourth, girls perform better than boys when working individually in the learning path 

condition and when working collaboratively in same-sex groups. 

Discussion 

In this research we focused on the effectiveness of learning paths, collaborative/individual instructional 

settings, and the impact of group composition and gender in the context of a STEM secondary education 

setting. 

Our results are important for different stakeholders and lead to both practical and theoretical implications. 

First, our findings showing the superiority of studying individually through a learning path as compared with 

conventional instruction in terms of retention test scores are in line with previous studies by Christmann et 

al. (1997) and Lockee et al. (2004). In their meta-analysis, Kulik, Bangert, and Williams (1983) observed 
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raised scores on retention tests, even several months after the instruction had been completed. Nevertheless, 

they concluded that these effects were not as clear as the immediate effects on the posttesting. Similar results 

were reported in a later study (Kulik & Kulik, 1991) wherein the researchers examined 20 studies on follow-

up examinations. However, within literature there is evidence for what is known as “the testing effect,” 

which refers to the tendency for a person’s long-term retention of knowledge to be strengthened by testing it. 

Dirkx, Kester, and Kirschner (2014) recently confirmed this effect as they found that secondary school 

students benefited from testing on “not only the retention of facts from a mathematics text but also the 

application of the principles and procedures contained in that text” (p. 361). To summarize, the advantage of 

studying via computer-based instruction, which in the case of the current research is through learning paths, 

was reaffirmed. However, future research is needed and should further investigate the exact conditions under 

which students benefit from this type of learning.  

Second, the cognitive load theory, which builds on a set of empirically established principles, and the 

ensuing CTML (Mayer, 2003, 2005) were discussed in this study to guide the instructional design of 

effective multimedia use in view of developing and presenting the learning paths that are employed. 

Regarding this, van Merriënboer and Kirschner (2007) stress that the design process of complex learning 

should be based on a holistic approach rather than on reducing a complex system to simpler elements. In 

other words, we should go further than merely applying design guidelines. Based on van Merriënboer’s 4-

Component Instructional Design model, van Merriënboer and Kirschner (2007) formulated ten activities that 

can be conducted when designing learning material. More concretely, the first three steps comprise the 

development of a series of learning tasks that serve as the body of the course. The next three steps focus on 

identifying the knowledge, skills, and attitudes that are required to perform the learning tasks. The last four 

steps deal with handling procedural information, cognitive rules, and prerequisite knowledge. Furthermore, 

van Merriënboer and Kirschner (2007) state that, by following these learning steps, we can avoid three 

commonly cited design problems: compartmentalization (e.g., making a separation between declarative and 

procedural knowledge), fragmentation (breaking a whole into small parts), and the transfer paradox (what 

works best for isolated objectives might not work for integrated objectives). It is clear that an atomistic 

design—as applied in the current study—is subordinated to a holistic approach as presented by van 

Merriënboer and Kirschner (2007). However, as recognized by Wiley (2000), “reality dictates that financial 

and other factors must be considered” (p. 12). To conclude, given our focus on a real classroom setting, we 

recognize that adopting a holistic approach might be superior, but it is not realistic for the average secondary 

school teacher to adopt it in creating his/her learning materials. 

Third, we expected that students who study learning paths in a collaborative way would outperform students 

within an individual setting. However, except for the boys in a mixed-gender group, the results did not 

support our expectation. A possible explanation according to Fisher et al. (2013) is the students’ lack of 

prior experience and knowledge regarding collaborative learning. He refers to the absence of “internal 

collaboration scripts” as defined by Kollar, Fischer, and Slotta (2007), which guide students in their 

collaboration process. As a solution, Fisher et al. (2013) advise that teachers use external collaboration 

scripts as they can help students develop more elaborate internal collaboration scripts. In this study, we used 

teacher scenarios as a form of external collaboration scripts, but this might not have been enough to 

compensate for the lack of experience on the part of both the teacher and the students with collaborative 

learning. 

Fourth, when gender and group composition were considered, a particular picture emerged. In the learning 

path condition, girls outperformed boys in the individual setting and in same-sex groups but not in mixed-

gender groups. In addition, we found evidence that mixed-gender groups are more productive when students 

are working collaboratively (Cranton, 1998; Johnson & Johnson, 1996; Webb & Palincsar, 1996), but only 
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for males. This result suggests that males benefit from the presence of a female when working 

collaboratively. In contrast, we found support for the observations of Felder et al. (1995) that girls in same-

sex groups perform better than in mixed-gender groups. According to Voyer and Voyer (2014), the 

male/female ratio plays an important role: when there are more females than males in a group or when the 

male/female ratio is equal, group composition does exert an influence for math and science courses. They 

also stressed that age plays an important role, as the female advantage is almost exclusively reported in 

junior, middle, and high school. Kenney-Benson, Pomerantz, Ryan, and Patrick (2006) provided an 

explanation for this advantage in their research on the different ways in which girls and boys approach 

schoolwork. Their study suggests that sex differences in children’s achievement goals and disruptive 

classroom behavior influence their learning strategies. Females tend to focus on mastery goals over 

performance goals in task completion, whereas males tend to show the reverse approach. As mastery 

emphasis generally produces better marks than performance emphasis, this could explain the higher marks 

for females. In their meta-analysis based on a sample of 184 articles comparing single-sex education (SS) 

with coeducational (CE) schooling for a wide range of factors (e.g., student outcomes, performance on 

mathematics, attitudes, etc.), Pahlke, Hyde, and Allison (2014) found ambiguous results when researching 

differences on students’ mathematics performance between SS and CE schooling for girls and boys. More 

specifically, in studies controlling for selection effects (e.g., random assignment of students to either the SS 

or the CE schooling condition), the effect size was close to zero. Studies that did not perform controls for 

selection effects reported a medium effect size. However, when considering all factors, no substantial 

advantages of SS schooling versus CE schooling were found. As a result, they concluded that future research 

should only be based on controlled studies (using random assignment and controlling for selection effects), 

given the diverse opinion and a lack of consensus on the available evidence among researchers. 

To put it clearly, we can conclude that more classroom research is needed to establish the generality of the 

present findings. 

Limitations 

This study, involving 496 students, 32 classes, and 15 teachers from 13 schools, took place in an authentic 

setting, which is advantageous for the ecological validity. However, there are clear limitations.  

First, although learners from 13 schools were involved, this sample was not the result of a selection on the 

basis of a sample stratification framework. Second, we did not check for additional student background 

variables, such as previous educational history, prior knowledge, motivation, aspirations, socioeconomic 

status, and so forth. Third, despite the fact that a consistent set of knowledge elements were investigated, the 

study was still short in duration. Fourth, the focus was on STEM-related teaching and learning and within 

STEM only on biology-related knowledge. Fifth, all variables (i.e., instructional format, 

collaborative/individual setting, group composition, and gender) are situated at the student level. Although 

we controlled for variance at the classroom and the school level, we did not add, and thus control, for 

variables situated at the classroom and the school level. Last, other efficacy and efficiency parameters 

should be considered when studying learning paths, for example, duration, time investment, resource 

allocation, and teacher conceptions.  

These limitations suggest that future research should replicate learning path research while considering other 

student samples, a longer research period, the impact of mediating variables on learners, the impact of 

teacher-related variables, and a focus on other outcome measures. This will be helpful in developing a 

broader evidence base to direct the design and implementation of learning paths in education. 
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Conclusion 

This study aims to make a contribution to the current body of literature that might lead to a better 

understanding of how secondary schools actually use their LMSs in an instructional setting. In addition, as 

this study on learning paths was conducted at the secondary school level, it represents an understudied level 

within educational research.  

In a previous study, we investigated (De Smet et al., 2014) how learning paths optimized with Mayer’s 

guidelines lead to a better elaborated and structured course and thus offer better spatial visualization as 

compared to learning paths that build on text, schemes, pictures, and web-based exercises. 

In this paper, we found that learning paths have a significant impact on learning, as they lead to higher 

scores as compared with conventional instruction. Second, we demonstrated that one should be careful when 

implementing collaborative learning in the context of STEM. Our research suggests that prior experience 

with and knowledge about collaborative learning is essential. Third, we found that females perform better 

within same-sex groups, whereas males achieve better results within mixed groups. This knowledge can help 

a teacher make the best choices when engaging students in collaborative learning, especially when the focus 

is on mathematics or science learning. However, the underperformance of the students in collaborative 

conditions underlines the necessity for further research into group dynamics and metacognition strategies 

(Ding, 2009; Fullan, 2010) to improve collaborative learning. In addition, follow-up research (De Smet, 

Valcke, Schellens, De Wever & Vanderlinde, 2016) added to this how several barriers hindering technology 

integration at the school and the teacher level affect the successful implementation of learning paths. More 

specifically, the consequence of a reliable and accessible ICT infrastructure, the importance of consistent 

qualitative technical and pedagogical support, and the need for more teacher professional-development 

programs were found to be important factors that support the successful instructional use of learning paths 

within an LMS. 
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Annex 

Table 4. Multilevel Parameter Estimates for the Four-Level Analyses of Learning Outcomes. 

 

Table 4 

          

Parameter Model 0 Model 1 
 

Model 2 

Fixed part  

   Intercept (BoyConv at Pre-test)  43.12 (1.28) *** 38.67*** (1.36) 
 

37.22*** (3.61) 
GirlConv    0.50 (2.97) 
BoyLP    1.59 (3.95) 
GirlLP    0.82 (3.95) 
Bin2BoysLP    2.62 (4.13) 
Gin2GirlsLP    0.61 (3.99) 
BinMix    5.94 (4.66) 
GinMix    3.16 (4.58) 

Post-test   6.40*** (0.74)  4.14 (2.95) 
Post*GirlConv    3.53 (3.62) 
Post*BoyLP    1.21 (3.41) 
Post*GirlLP    1.98 (3.42) 
Post*Bin2BoysLP    -2.52 (3.68) 
Post*Gin2GirlsLP    2.70 (3.50) 
Post*BinMix    4.12 (4.49) 
Post*GinMix    2.36 (4.40) 

Retention test  7.72*** (0.74)  -0,22 (2.99) 
Retention*GirlConv    4.34 (3.64) 
Retention*BoyLP  

  
6.50 (3.45) 

Retention*GirlLP    12.07*** (3.48) 
Retention* Bin2BoysLP    3.56 (3.68) 
Retention*Gin2GirlsLP  

  
10.73** (3.46) 

Retention*BinMix    6.21 (4.55) 
Retention*GinMix  

  
1.33 (4.470) 

Random Part  
   Level 4: School Intercept 4.91 (8.50) 8.16 (8.96)  7.95 (9.46) 

School Variance 2.43% 4.33%  4.37% 
Level 3: Class Intercept 33.27** (11.48) 26.38** (9.61) 

 
26.93** (10.19)  

Class Variance 16.46% 14.00%  14.79% 
Level 2: Student Intercept 26.65*** (5.53) 32.65*** (5.43) 

 
29.37*** (5.44) 

Student Variance 13.18% 17.33%  16.13% 
Level 1: Knowledge test 137.33*** (6.51) 121.26***(5.76) 

 
117.78*** (5.92) 

Knowledge test Variance 67.93% 64.35%  64.70% 

Model fit  
   

 
 

   -2*loglikelihood:  11367.24 11252.01 
 

9980.40 

X2  115,23 
 

1271.60 
df  2 

 
21 

p  <.001 
 

<.001 
Reference model  Model 0 

 
Model 1 
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Note: Conv = Conventional Instruction, LP= Learning Path, Bin2BoysLP = a boy in a same-sex 

collaborative group, Gin2GirlsLP = a girl in a same-sex collaborative group, BinMix = a boy in a mixed 

collaborative group and GinMix = a girl in a mixed collaborative group 

* p<.05 **p<.01 *** p<.001 


