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Abstract 

Learning paths have the potential to play an important role in the way educators serve their 

learners. Empirical research about learning paths is scarce, particularly in a secondary 

education setting.  The present quasi-experimental study took place in the context of a biology 

course involving 360 secondary school students. A 2 x 2 factorial research design was 

adopted. Learners were engaged in learning activities in a learning path. These learning 

activities (1) differed in design and (2) were either undertaken individually or collaboratively. 

Gender was considered as a critical co-variable given the focus on science learning. All 

learning paths were developed on the basis of visual representations, but in the experimental 

design conditions, learners worked with learning paths designed according to Mayer’s 

multimedia guidelines (2003). Multilevel analyses were applied to study the impact on 

learning outcomes according to the design of learning paths, the individual/collaborative 

setting, and the co-variable gender. The study provides empirical evidence that both the 

design and the group setting (collaborative versus individual) have an impact on learning 

outcomes. Although there was no main effect, several significant interaction effects with 

gender were found. The results are helpful to direct research about the design and 

implementation of learning paths in a secondary school setting and underpin the relevance of 

representation modes in science learning. 

Keywords: secondary education, learning management system,  learning path, collaborative 

learning, science education, STEM 

Introduction 

Earlier research by De Smet, Bourgonjon, De Wever, Schellens, and Valcke (2012) studied 

the rationale behind the technology acceptance of learning management systems (LMS) by 

secondary school teachers and also investigated the particular instructional use of LMS within 

this group of teachers. They found the “informational use of the LMS” or content published 

by the users (as defined by Hamuy & Galaz, 2010) can be considered a precursor for the 

“communicational use,” or all processes that foster the exchange of these contents, between 

LMS users. In other words, a basic usage level (e.g., document publishing or sending 

announcements) seems to be required before more advanced LMS functionalities can be 

adopted, such as a wiki (collaborative writing), a forum (moderated discussions) or learning 

paths (technology-enhanced road map).  

De Smet and Schellens (2009) observed that from 376 Flemish secondary school teachers, 

only 10% actively used the learning path module. This low adoption level suggests that 

teachers do not know how to design and implement these learning paths. As a result, this 

study will focus on how learning paths could be appropriately designed and implemented.  

Most literature on learning paths can be found within research for technology-enabled 

learning that studies algorithms for computer-adaptive systems (Capuano et al., 2009; Wong 

& Looi, 2012). Within this article, a “learning path” refers to the LMS functionality to order a 

number of learning objects in such a way that they result in a road map for learners. Within a 
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learning path, learning steps are pre-structured in a general way (as a navigation map or a 

table of contents) or in a very specific sequenced way (e.g., “complete first step 1 before 

moving on to step 2”). Learning paths can be created with authoring tools (e.g., eXe, Xerte, 

Udutu) or programmed by software developers.  Central to the design of a learning path are 

the building blocks: the learning objects. Although the concept of “learning objects” is widely 

used, its definition is not always clear. According to Wiley (2000), the most cited definition of 

learning objects comes from the Learning Technology Standards Committee (also known as 

IEEE, 2005): “any entity, digital or non-digital, which can be used, re-used or referenced 

during technology supported learning.” In his review of definitions of learning objects, Kim 

(2009) concluded that most definitions include terms such as “learning,” “instructional,” 

“pedagogical,” or “educational.” In this article, we put forward the definition by Kay and 

Knaack (2007), who defined learning objects as “interactive web-based tools that support the 

learning of specific concepts by enhancing, amplifying, and/or guiding the cognitive 

processes of learners” (p. 6). 

Learning objects have the potential to play an important role in the way teachers teach and 

learners learn. However, empirical research about learning objects is scarce, particularly in 

secondary education (Kay & Knaack, 2008). Cochrane (2005) found relatively little research 

reporting design principles for learning objects. Dalziel (2003) argued that e-learning usually 

has “a well-developed approach to the creation and sequencing of content-based, single 

learner, self-paced learning objects,” but added “there is little understanding of how to create 

sequences of learning activities” (p. 593). In addition, he emphasizes there is hardly any 

research addressing how to support learners with learning objects in a structured, 

collaborative environment. Given the lack of empirical research focusing on how learning 

paths should be designed, presented and implemented, and the lack of impact studies on 

student performance (Kay & Knaack, 2005; Nurmi & Jaakkola, 2006), we concentrated in this 

study on the impact of learning with learning paths that vary (1) in their design and (2) in the 

way they are studied, individually or collaboratively.  In the next sections, we first present the 

theoretical basis underpinning design decisions for learning paths and the rationale in relation 

to collaborative versus individual study of the learning paths. Since our study is set up in the 

domain of science learning, we also focus on gender, a key variable in science education 

research. 

Theoretical and empirical framework 

Visual representations 

Learning paths can differ in the way they are visually represented. The value of visual 

representations in the design of learning paths can theoretically be linked to Cognitive Load 

Theory (Sweller, 1988, 1994; Sweller, van Merriënboer & Paas, 1998; van Merriënboer & 

Sweller, 2005) and the Cognitive Theory of Multimedia Learning (Mayer, 2001, 2003, 2005). 

Cognitive Load Theory (CLT) is an instructional theory that focuses on the human cognitive 

architecture and its consequences for the design of instruction and learning materials. The 
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Cognitive Theory of Multimedia Learning (CTML) reiterates CLT’s cognitive architecture 

but looks even more explicitly at design principles for multimedia learning. 

Cognitive Load Theory  

Cognitive Load Theory is based on the assumption that the processing capacity of working 

memory (WM) of individual learners is limited, which is in contrast to an unlimited long-term 

memory (LTM). When new information is not well structured, too abundant, or not well 

represented, it will invoke extraneous cognitive load (see below) that will hinder the 

processing of new information, resulting in less successful storage in LTM (Baddeley, 1986). 

CLT also builds on the assumption that information is organized into schemas within WM, 

and are subsequently stored and retrieved more easily in/from LTM (Sweller, van 

Merriënboer & Paas, 1998). A schema is a cognitive structure that connects a large amount of 

information that can be processed as a single unit in working memory and stored in long-term 

memory. One frequently used example is that of a chess grand master who uses schemas to 

categorize board pieces and board moves into patterns. Information processing can occur 

automatically or consciously (Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977). 

Automatic processing occurs after extensive practice and results in freeing up working 

memory, while conscious processing occurs in working memory itself and requires memory 

resources, thus invoking cognitive load. Therefore, a novice chess player who has few such 

schema available in LTM will need more time to execute a chess move than a professional 

player. In order to foster learning, schema construction is important, as it leaves working 

memory open for other tasks and stores information in LTM.    

CLT distinguishes three types of cognitive load: intrinsic, extraneous, and germane cognitive 

load (Sweller et al., 1998). Intrinsic cognitive load is dependent on the intrinsic complexity of 

the information (number of elements and the interrelations between them). Germane cognitive 

load refers to the effort required to construct schemas. Extraneous cognitive load is the effort 

required to process information in view of schema construction. The latter is strongly 

dependent on the way information is represented. 

CLT theory challenges instructional designers to design learning material that results in 

meaningful learning but does not put too heavy a burden on working memory (Sweller, 1999; 

van Merriënboer, 1997). Paas, Tuovinen, Tabbers, and Van Gerven (2003) state, “because 

intrinsic load, extraneous load, and germane load are additive, it is important to realize that 

the sum of intrinsic, extraneous, and germane cognitive load, should stay within working 

memory limits” (p.65).  Given the fact that intrinsic load is intrinsic to the task, and germane 

cognitive load is required for schema construction, instructional designers should control 

extraneous load. Different techniques have been researched to handle extraneous cognitive 

load, among others, the Cognitive Theory of Multimedia Learning (Mayer, 2001, 2003, 

2005).  

Cognitive Theory of Multimedia Learning 

Instructional designers recognized the need for learning materials that are sensitive to 

cognitive load (Mayer & Moreno, 2003). A lot of research has been done based on the 
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Cognitive Theory of Multimedia Learning (CTML), as postulated by Mayer (2001, 2003, 

2005). This theory represents a framework to direct instructional design of multimedia 

materials and results in the definition of practical guidelines to design multimedia learning 

materials.  

CTML is based on three assumptions (Mayer, 2003): the dual channel assumption, the limited 

capacity assumption, and the active learning assumption. The dual channel assumption is 

derived from the research of Paivio (1978, 1991) and Baddeley (1992, 1995). Central to this 

assumption is that two separate information processing systems are active to process visual 

(e.g., text, images) and verbal (audio) representations. The limited capacity assumption also 

builds on the work of Baddeley (1992) and Baddeley, Gathercole and Papagno (1998). It 

states the amount of processing that can take place within the visual and auditory processing 

channel is limited. The active learning assumption is built on Wittrock’s (1989) generative 

learning theory and implies the learner is actively engaged in processing information and 

mentally organizes it. Cognitive processes involved include selecting (visual/audio), 

organizing (mental representation), and integrating (visual, audio, and prior knowledge). In 

order to study the impact of learning path design, we build in the present study on CTML to 

differentiate between two learning paths, differing in the degree of elaboration and structure.  

Collaborative learning 

In this article, the term “collaborative learning” refers to the engagement of all participants in 

solving a problem together (Roschelle & Teasley, 1995). Akkerman et al. (2007), building on 

the work of Valsiner and Van der Veer (2000), present both a cognitive and a socio-cultural 

view when focusing on group cognition. Within the cognitive perspective, the subject of 

learning is the individual who constructs knowledge about the surrounding world. Following 

the socio-cultural perspective, the learner is seen as a participant of a social entity where 

knowledge results from interaction and social activity. Akkerman et al. (2007) add that, 

within the cognitive view, the social aspect is not denied but rather “understood through its 

residence in the mind of the individual” (p.42).  

Putting learners in a group does not guarantee spontaneous collaboration (Cohen, 1994) or 

effective learning behavior (Soller, 2001). As a result, instructional support is provided to 

scaffold or script the collaborative learning process (Kollar, Fischer & Hesse, 2006). Given 

the focus on learning management systems in the present article, the design of collaborative 

learning can strongly build on research in the field of Computer Supported Collaborative 

Learning (CSCL). Kollar, Fischer & Hesse (2006) put forward five minimum characteristics 

of scripting in a CSCL setting: scripts must 1) contain an objective, 2) engage learning 

activities, 3) sequence all required actions, 4) specify and distribute roles, and 5) contain a 

type of representation in which instructions are presented to the learners. In this research, we 

used teacher scenarios (see below) that were based on scripts. 

Adopting collaborative learning in the context of learning paths, can – from a theoretical 

perspective – also be linked to cognitive load theory. Kirschner, Paas, and Kirschner (2009a) 

found that groups can be considered information-processing systems containing multiple 
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working memories, and as such, create a collective working space where cognitive load can 

be divided among the learners. In this view, groups are favored against individuals who can 

only rely on their individual working memory.  Furthermore, when the group work is well 

structured (e.g., building on strongly elaborated and structured learning objects in the learning 

path), it reduces extraneous cognitive load and helps learners maximize cognitive processes 

that result in schema construction (Sweller, Van Merrienboer, & Paas, 1998), and thus, higher 

learning outcomes.  

Science education and gender  

The present study takes place within the setting of STEM education (science, technology, 

engineering, and mathematics). Although STEM education leads to good jobs and a higher 

standard of living, today’s youth seem to have little interest in science as a possible career 

path (European Commission, 2004, 2006; Organisation for Economic Co-operation and 

Development [OECD], 2007, 2008; U.S. Department of Education, 2007; National Governors 

Association, 2007). In addition, there is a clear gender gap in the STEM field. Several studies 

(European Commission, 2004, 2012) reveal that females are underrepresented in science 

careers. This comes in sharp contrast to the observation that girls are more successful at 

school, as they obtain higher grades and are less likely than boys to repeat a year (European 

Commission, 2006). In a recent publication, the European Commission (2012) presented the 

following reasons for this gender gap: stereotypes found in children’s books and school 

manuals, gendered attitudes of teachers, gendered advice and guidance on courses to be 

followed, and different parental expectations regarding the future of girls and boys. 

Research about gender differences does not always present a consistent picture. PISA 2012 

(OECD, 2013) showed different levels of performance in science, reading, and mathematics 

between males and females, although differences were significantly larger within, rather than 

between, genders. Nevertheless, significant gender differences were observed for reading (in 

favor of girls) and mathematics (in favor of boys). They also found that for mathematics, girls 

are under-represented among the highest achievers in most countries and economies, and 

males have higher perceptions about their science abilities as compared to females. This is in 

line with research from Eclles (1994) and Lubinski and Benbow (2006), which stated that 

women are less likely to enter occupations linked to mathematics and physical sciences 

because they have less confidence in their abilities and place less subjective values on these 

fields compared to other occupations. Furthermore, Eccles (1994) argued that girls rate social 

values high and prefer to study academic subjects that have social implications, which, in the 

long term, enable them to do something worthwhile for society.  

Learning outcomes based on gender 

We believe the main conditions under study (i.e., design decisions and the group setting) 

influence learning outcomes based on gender. When studying design conditions, we refer to 

Super and Bachrach (1957), as well as more recent follow-up research by Wai, Lubinski, and 

Camilla (2009), which focused on the critical role of spatial ability within STEM-education. 

The construct spatial ability was defined by Lohman (1994) as “the ability to generate, retain, 
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retrieve, and transform well-structured visual images” (p. 1000). Mayer and Sims (1994) 

found evidence that high-spatial learners had to dedicate fewer cognitive resources to build a 

representational connection between visual and verbal material, thus leaving more room for 

other processes. From their longitudinal findings, Wai, Lubinski and Benbow (2009) 

concluded that high levels of spatial visualization have a robust and highly relevant influence 

in approaching STEM domains. Ceci and Williams (2010) added that males excel in spatial 

ability and underline the fact that in large meta-analyses, the effect size for spatial ability is 

substantial: .50 to .75 for male superiority. As the second version of our learning path is 

optimized with Mayer’s guidelines (2003), leading to a better elaborated and structured 

course, we can postulate that this optimized version will offer better spatial visualization.  

When researching group setting, we can build on group diversity literature. Harrison and 

Klein (2007) describe group or unit diversity as “the distribution of differences among the 

members of a unit with respect to a common attribute X” (p. 1200). They differentiate 

diversity as: separation (differences in opinion among members), variety (differences in 

knowledge and/or experience) and disparity (differences in status and/or power), and 

concluded that only variety has a positive impact on group effectiveness. As a result, gender 

diversity can be conceptualized as gender separation, gender variety, or gender disparity. 

Extending the work of Harrison and Klein (2007), Curşeu, Schruijer and Boroş (2007) and 

Curşeu and Sari (2013) found gender variety indeed has a positive outcome on group 

cognitive complexity, and mixed-gender groups achieve better results. Moreover, Curşeu and 

Sari (2013) stress that “the core argument in this line of research is that gender variety 

increases the pool of cognitive resources of groups because men and women have 

qualitatively different life experiences, therefore likely to have different task-related 

knowledge structures (Curşeu, Schruijer, & Boros, 2007; Rogelberg & Rumery, 1996)” (p. 1). 

Slotta and Linn (2009) found web-based collaborative inquiry seems to be helpful in 

developing and maintaining positive attitudes towards science and science instruction. In a 

recent study, Raes, Schellens & De Wever (in press) found that low achievers, and more 

specifically, low-achieving girls, benefited from this type of intervention, especially with 

respect to the ability to participate in small group discussions.  

On the basis of the group diversity literature and the positive impact that web-based 

collaborative inquiry has on girls, we expect that girls will benefit from working 

collaboratively. 

Research design 

Research question and research hypotheses 

The main research question directing this study is whether additional investment in the design 

and implementation of learning paths will have a beneficial impact on learning outcomes. 

Gender is considered as a critical co-variable given the focus on science learning.  
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Building on the theoretical framework of CTL and CTML, we put forward the first hypothesis 

(H1): Students studying a learning path, optimized with Mayer’s (2003) guidelines in mind, 

will attain significantly higher learning outcomes as compared to students studying a basic 

learning path with multimedia learning objects. 

Building on the CSCL framework, we put forward the second hypothesis (H2): Learners 

studying the learning path collaboratively will attain significantly higher learning outcomes as 

compared to students studying the learning path individually. 

Considering the empirical data in relation to gender and STEM, we put forward a third, 

twofold hypothesis. Given the critical role of spatial ability, we expect (H3a) a significant 

interaction effect with respect to gender, in favor of males, when studying the learning path 

optimized with Mayer’s guidelines (2003). In view of the group diversity literature and the 

positive impact web-based collaborative inquiry has on girls, we expect (H3b) a significant 

interaction effect with respect to gender, in favor of females, when studying the learning path 

collaboratively. 

Participants 

Secondary education in Flanders comprises six consecutive years of study, starting at the age 

of 12.  We selected six secondary education schools in collaboration with a GO! staff 

member. GO! is one of the three dominant governing bodies that sets up schools in Flanders, 

the Dutch speaking area of Belgium. GO! schools comprise 15,27% of secondary school 

education in Flanders. Governing bodies have considerable autonomy to, among other things, 

develop school curriculum, recruit staff, choice of teaching methods, etc.  As a consequence, 

the curriculum in the selected schools and classes is largely comparable. All participating 

schools are situated in urban areas, as Belgium, and Flanders in particular, is one of the 

world’s most urbanized countries (United Nations World Populations Prospects, 2011).  

All biology teachers (N = 8; 3 males, 5 females) teaching in the third grade of each of the six 

schools were willing to participate in the study. Twenty-nine different classes were selected at 

random to participate in the study. All students enrolled in these 9th grade classes (N= 360; 

167 males and 193 females) participated in all consecutive activities during the study. 

Students were, on average, 15 years old (89,4%). Figure 1 shows the participant flow chart. 

Prior to the study, informed consent to use the data for research purposes was obtained 

through the different school teachers. 
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Figure 1. Participant flow chart. 

The biology learning materials: Two versions of the “Bacteria” learning path 

In the present study, learning paths were developed using “eXe learning,” an open-source 

authoring tool. Resources authored in eXe can be exported as a website or imported in any 

SCORM (Sharable Content Object Reference Model) compliant Learning Management 

System. This gives teachers the opportunity to open learning paths via a browser (online or 

offline) or to integrate these learning paths within their school LMS. 

From the biology curriculum, the topic “bacteria collection and growth” was selected in view 

of developing new learning materials. Two recently graduated biology teachers created 

learning materials following the official GO! biology curriculum. Next, these materials were 

reviewed and modified by 18 pre-service teachers majoring in biology under the supervision 

of their lecturer. 

A first version of a learning path was elaborated, consisting of multimedia learning objects 

that build on text, schemes, pictures, and web-based exercises (see Figure 2). A second 

version of the same learning path was developed by applying Mayer’s multimedia guidelines 

(2003). Based on the handbook by Clark and Mayer (2007), learning objects in the second 

version of the learning path were optimized by applying, for example, the multimedia 

principle (adoption of both audio and graphs), the contiguity principle (alignment of the text 

and the corresponding graphics), the redundancy principle (explanations next to visuals were 

either with audio or text, not both), and the coherence principle (no extra interesting materials 

were added). The active learning assumption (Wittrock, 1989, Mayer, 2003) stresses the 

learning material should have a coherent structure and provide guidance to the learner on how 

to build knowledge structures. As a result, advanced organizers were included in the 

optimized learning path in order to help organize unfamiliar content (Ausubel, 1960, 1968).  
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For reading purposes, we will refer to the first version of the learning path as the “TSPW 

learning path” (Text, Schemes, Pictures and Web-based exercises) and to the second version 

as the “MGL learning path” (Mayer GuideLines). 

 

 

Figure 2. The uppermost image depicts an advanced organizer (Ausubel) on bacteria 

classification that was offered to all students following a MGL learning path before 

navigating to the rehearsal bacteria classification exercises (the image at the bottom). Students 

following a TSPW learning path were only exposed to the rehearsal bacteria classification 

exercises. No other information on the subject was given to these learners. 

Individual versus collaborative study of the learning paths 

Along with a better multimedia elaboration of the learning path, we also studied the impact of 

the group setting. As defined by Kollar, Fischer and Hesse (2006), and as applied within this 

research, scripts contain several components, including a learning objective and a type of 

representation, in which instructions are presented to the learners. Scripts also engage learning 

activities and sequence all required actions.  

We chose to implement scripts into teacher scenarios for two reasons. First, Flemish teachers 

are used to working with these scenarios on a daily basis. Pre-service teachers and in-service 

teachers use lesson preparation scenarios as part of their (sometimes obligatory) daily work 

routine. We used existing lesson preparation templates to create our teacher scenarios.  

Second, we wanted to guarantee the comparable nature of the activities under all research 

conditions. The collaboration scenarios did not result in differences in the content of what was 

studied about bacteria; they differed in the way students organized, shared, and carried out 

their work to guarantee that students – in whatever research condition – received the same 

learning opportunities and to monitor the way students followed the particular learning path.  
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Research instruments: Learning performance 

Students were offered knowledge tests at three consecutive moments: a pre-test, a post-test 

(immediately after completion of the learning path), and a retention test (one month after 

completion of the learning path). Each test consisted of 20 multiple choice and true/false 

questions. The study took, on average, between seven and nine weeks to be completed. 

However, since teachers were not able to refrain from monthly evaluation between the post-

test and the retention test, we decided to focus on pre-/post-test differences in our study. 

Retention test scores are mentioned in Table 4; however, readers should keep in mind that 

these could be influenced by intermediate tests not taken into account in the present study.  

All test items were created by two recently graduated biology teachers based on the official 

GO! biology curriculum. Six biology teachers tested all items within their classes. Based on 

the analysis of these tests and the teachers’ item evaluation, some items were discarded and 

the remaining items were divided into three balanced tests (one test for each moment). Figure 

3 shows how knowledge tests were created. 

Item analysis was conducted to improve the quality and accuracy of the true/false items. A 

combination of item difficulty (p-value) and item discrimination (PBS or Point-Biserial 

correlation) was taken into account. Items with P-values above 0.90 and PBS-values near or 

less than zero were removed from the tests (Division of Instructional Innovation and 

Assessment, University of Texas at Austin, 2007). As a result, eight items were omitted from 

each test.  

 

Figure 3. Creation process of the learning paths and the knowledge tests. 
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Procedure 

The researcher visited all teachers and gave a one-hour introduction. We briefed teachers on 

all the aspects of the research process. Other topics discussed included, amongst others, the 

proposed time schedule and technical information concerning learning paths within the 

Learning Management System. Complete classes (N = 29) were assigned to the four different 

conditions (see Table 1). It was mandatory that all lessons took place in computer classes.  

As can be observed in Table 1, we did not reach a balanced number of students across all 

conditions. Two teachers assigned to the collaborative condition of the MGL learning path 

had to cancel their participation. Given the last-minute character of these events and the 

unfortunate timing in the middle of a semester, we were not able to recruit new teachers nor to 

redistribute the teachers over conditions.  

Depending on the condition they were assigned to, all teachers received a digital (USB-stick) 

and/or a paper version of the following material: a research guideline, a comprehensive 

teacher scenario, the proposed time schedule, and two versions of the learning path (HTML 

and SCORM). At the same time, we provided a box containing paper versions of all the 

knowledge tests. We also sent teachers an e-mail address and telephone number by which 

they could contact three researchers. Only a few minor technical questions emerged. 

Table 1. Number of participants across conditions. 

 

Note: Ind = individual, Col = collaborative, TSPW = Text, Schemes, Pictures and Web-based 

exercises learning path, and MGL = Mayer GuideLines learning path. 

Statistical analysis 

Our data have a clearly hierarchical structure (i.e., students in classes from different schools 

were offered knowledge tests at three consecutive moments). This leads to the conclusion that 

individual observations are not completely independent given the selection processes, 

common history, and experiences students share (Hox, 1994). Knowledge scores from 

students in the same classes might be dependent, and thus break the assumptions of a simple 

regression analysis. By doing so, we would ignore school-level and class-level inferences and 
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focus only on individual learning outcomes. In this respect, Multilevel Modeling is suggested 

as an alternative and adequate statistical approach (Diez-Roux, 2000, Nezlek, 2008), and most 

certainly in the case of repeated measures (Goldstein, 2003). Within multilevel analysis, the 

hierarchical nesting, dependency, unit of analysis, standard errors, confidence intervals, and 

significance tests are handled correctly (Goldstein, 1995) and, in general, even more 

conservative than a traditional regression analysis where the presence of clustering is ignored 

(Goldstein, 2003). 

Following Van Der Leeden (1998), we consider repeated measures as a hierarchical structure 

where measurements are nested within individuals. Consequently, our knowledge tests are 

defined as the first level, students as the second level, classes as the third level, and schools as 

the fourth level. We used MLwiN software (Centre for Multilevel Modelling, University of 

Bristol) to analyze the hierarchical data (Nezlek, 2008, Rasbash, Steele, Browne, & Goldstein, 

2009).  

We followed a two-step procedure to analyze the effects of three independent variables 

(design decisions, group setting and gender) on the dependent variables (learning outcomes). 

The models built following this procedure are presented in Table 4 (in annex). First, we 

created a four-level conceptual null model (Table 4, Model 0) to serve as a baseline model. 

This unconditional null model (without any predictor variables) provides the overall pre-test, 

post-test, and retention scores across all students, classes, and schools. The second step 

concerned the input of the three main explanatory variables (visual representation, group 

setting, and gender) in the fixed part of the model and allowed cross-level interactions 

between student, class, and school characteristics. This resulted in Model 1 (Table 4). 

Results 

Model building 

The models built following the two-step procedure are presented in Table 4. 

Given our repeated measures approach, the conceptual unconditional null model (Table 4, 

Model 0) predicts the overall pre-test (M = the intercept, or 57.18 out of 100), post-test (M = 

64.49 = 57.18 + 7.31), and retention test scores (M = 71.93 = 57.18 + 14.75) across all 

students, classes, and schools. Thus, in general, without taking into account visual 

representation, collaboration mode, and gender but controlling for the nested data structure, 

students score significantly higher on the post- and retention test as compared to the pre-test. 

This null model also results in four variance estimates, as shown in the random part of the 

model: one for school level, one for class level, one for student level, and one for the 

measurement occasion. The variance in scores within this null model on the four levels are, 

except for the school level, significantly different from zero and significant at the p <.001 

level. As a result, we can state that 1.15 % of the total knowledge score variance lies at school 

level, 9.42% at class level, 14.26 % at student level, and finally, 75.17% at the measurement 

occasion.  
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Subsequently, based on the theoretical framework, visual representation, group setting, and 

gender were entered into the model as potential explanatory variables. All predictors were 

included in the models as fixed effects. Adding these variables to the null model resulted in a 

better model fit (X² = 55.59, df = 21, p < .001).  Model 1 (Table 4) shows the results of this 

factorial model with main and interaction effects added to the model. The reference category 

is a male working individually and following a TSPW learning path. In the random part of 

Model 1, all variance in scores are significantly different from zero and significant at the p 

<.001 level, except for school level. 

Student scores 

Table 2. Knowledge scores on pre- and post-test.  

 

Note: Indiv = individual; Collabor = collaborative; TSPW = Text, Schemes, Pictures and 

Web-based exercises learning path; and MGL = Mayer GuideLines learning path. 

Figure 4 shows the drilled-down details of student scores, while Table 2 displays the 

knowledge scores on the pre- and the post-test. First, we notice students’ scores are close 

together (between 55.05 and 61.29) at the pre-test measurement, except for females working 

collaboratively on a MGL learning path (46.57). However, this score on the pre-test was not 

significant (p = 0.23). Second, we observe that the two steepest slopes (i.e., students who 

learned the most from the intervention) are the females and males within the individual MGL 

learning path condition. These students received the highest post-test scores: 76.52 for males 

(significant on the post-test and on the increase between the pre-test and post-test, p < .001) 

and 72.22 for females (non-significant on the post-test and on the increase between the pre-

test and post-test, p = .07 and p = .29). On the other hand, the lowest scores on the post-test 

can be found for males working individually on a TSPW learning path (non-significant on the 

post-test, i.e., p = .30, but a significant decrease between the pre-test and post-test, p < .001) 

and for females working collaboratively on a MGL learning path (non-significant on the post-

test and on the increase between the pre-test and post-test, p = .46 and p = .30).  

The remaining four scores are closely bundled together (between 63.22 and 66.00). Out of 

those four, only the condition where males worked collaboratively on a MGL learning path 

indicates a non-significant post-test score (p = .11). When calculating the increase between 
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the pre-test and post-test scores within those four conditions, only the increase for females 

working individually on a TSPW learning path was found to be significant (p = .007). 

 

Figure 4. Knowledge scores in the pre-test and post-test for males and females. 

Note: M = male; F = female; Ind = individual; Col = collaborative; TSPW = Text, Schemes, 

Pictures and Web-based exercises learning path; and MGL = Mayer GuideLines learning 

path. 

Hypothesis testing 

Table 3. Differences between scores on the post-test and an overview of the significant 

increase between the pre- and post-test.  
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Note: Indiv = individual; Collabor = collaborative; TSPW = Text, Schemes, Pictures and 

Web-based exercises learning path; and MGL = Mayer GuideLines learning path. 
a Given the non-significant difference, the direction of this difference was not established. 

Given our first hypothesis (H1), we expected students following a MGL learning path to 

outperform students studying a TSPW learning path in their knowledge scores. As illustrated 

in Figure 4, the three highest knowledge scores on the post-test are attained by males and 

females following a MGL learning path within an individual setting (MIndMGL and 

FIndMGL), and by males in a collaborative setting (MColMGL). These findings suggest that 

optimizing a learning path with Mayer’s Guidelines (2003) leads to better knowledge scores. 

However, when calculating the differences between the knowledge scores on the post-test 

(Table 3), this observation is only confirmed for students within the individual setting. 

MIndTSPW was significantly lower than MIndMGL (p < 0.001) and FIndTSPW was 

significantly lower than FIndMGL (p = 0.04). However, MColTSPW was not significantly 

lower than MColMGL (p = 0.13) and FColTSPW was lower than FColMGL (p = 0.42). 

Therefore, Hypothesis 1 can only be accepted for both males and females following the MGL 

learning path in an individual setting. 

We also hypothesized students who collaborate in tackling the learning task would 

outperform students within an individual setting (H2). As depicted in Figure 4 and given the 

conclusion of Hypothesis 1, this was not the case. However, when observing the collaborative 

conditions (Figure 4), we notice a difference between males and females. On the one hand, 

males attain almost the same score under the collaborative condition, regardless of the version 

of learning path studied.  This is confirmed when calculating the differences between the 

knowledge scores on the post-test (Table 3), as MColTSPW is not significantly lower than 

MColMGL (p = 0.13). On the other hand, females have a higher score (Figure 4) on the post-

test within the collaborative condition when they study with a TSPW learning path (as 
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compared to a MGL learning path). However, when calculating the differences between the 

conditions on the post-test, FColTSPW is not significantly higher than FColMGL (p = 0.42). 

In addition, the superiority of studying in the individual setting for males and females – 

already concluded in relation to Hypothesis 1 for the MGL learning pathing – is now also 

confirmed for the TSPW learning path when calculating the increase in pre-test to post-test 

scores (Table 3) for MIndTSPW (p < 0.001) and FIndTSPW (p = 0.007). In view of these 

findings, we therefore have to reject Hypothesis 2. 

Following our third hypothesis, we expected to observe a significant interaction effect of 

gender when studying the two versions of the learning paths in combination with group 

setting. For males, we hypothesized (H3a) that, given the critical role of spatial ability, males 

would benefit most from the – with Mayer’s guidelines (2003) – optimized learning path 

(MGL learning path).When testing Hypothesis 1, we found that males following a MGL 

learning path in an individual setting achieved better results than males following a TSPW 

learning path individually. We did not find similar results for males in the collaborative 

setting. Moreover, the superiority of the MIndMGL condition above MIndTSPW, 

MColTSPW and MColMGL is very obvious. When calculating (Table 3) the differences 

between knowledge scores on the post-test, MIndMGL was significantly higher than 

MIndTSPW (p < 0.001), than MColTSPW (p = 0.045) and MColMGL (p = 0.019). When 

calculating the difference between the pre-test and the post-test for MIndMGL (Table 3), the 

increase in scores was significant (p = 0.001). As a result, hypothesis H3a can only be partly 

accepted for males following the MGL learning path in the individual setting. 

For females, we hypothesized (H3b), in view of the group diversity literature and the positive 

impact web-based collaborative inquiry has on girls, that learning outcomes would be 

significantly higher when girls work collaboratively. As seen in Figure 4 and Table 2, females 

following a TSPW learning path achieve slightly better scores on the post-test within the 

collaborative condition as compared to the individual setting. When calculating the difference 

between these conditions on the post-test, FColTSPW was significantly higher than 

FIndTSPW (p = 0.03).  However, females following a MGL learning path collaboratively 

achieved lower scores on the post-test as compared to girls under the individual MGL 

condition. When calculating the difference between these conditions on the post-test, 

FColMGL was not significantly lower than FlndMGL (p = 0.46). Given the rather small 

difference between FColTSPW and FIndTSPW on the one hand and the problems arising 

from the unbalanced number of students in the FColMGL condition, we conclude there is no 

conclusive evidence to accept hypothesis H3b.  

Discussion 

In this research, we focused on the impact of the way a learning path is designed, an 

individual versus a collaborative setting, and gender differences between boys’ and girls’ 

learning outcomes in the context of a STEM secondary education setting.  
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Our findings showing the superiority of an (with Mayer’s guidelines, 2003) optimized 

learning path are in line with previous research on the critical role of spatial ability within 

STEM-education (Super & Bachrach, 1957; Wai et al. 2009; Mayer & Sims, 1994). A MGL 

learning path leads to a better elaborated and structured course, and thus, offers a better spatial 

visualization than a TSPW learning path. These findings help explain the superiority of a 

MGL learning path within this research, and more specifically, when students (both males and 

females) are working alone. 

These results are important for different stakeholders. We present both practical and 

theoretical implications. In the first place, our results are important for teachers when they are 

designing learning paths to be implemented in an online learning environment. In addition, 

the results are also important for instructional designers creating learning materials to be used, 

for example, in addition to school manuals.  

The importance of visual representation has theoretical implications within STEM-education. 

More specifically, the critical role of spatial ability (Mayer & Sims, 1994; Wai et al.,2009; 

Ceci & Williams, 2010) was reaffirmed. Empirical evidence from longitudinal research shows 

that spatial ability is an important psychological characteristic among adolescents in general, 

but particularly beneficial for those who go on to develop high levels of STEM-expertise in 

their future careers (Wai, Lubinski & Benbow, 2009). Lubinski (2004) even advocates the 

potential usefulness of spatial ability to identify women with genuine talent for and interest in 

math/science careers. Moreover, he stresses that, on the basis of individual differences in 

spatial ability, not only student selection, but also instruction and curriculum design should be 

taken into account. 

Besides the strong impact of the way learning materials are visually represented, the impact of 

collaborative learning was less obvious. More specifically for females, the results demonstrate 

that collaboration does not automatically lead to better learning (Soller, 2001). 

In their meta-analysis on the application of technology in support of collaborative learning, 

Resta and Laferrière (2007) refer to evidence that was found in favor of collaborative learning 

when groups are heterogeneous, including gender (see also Johnson & Johnson, 1996), but 

also to the tendency of women to be less active in learning groups (see also Felder, Felder, 

Mauney, Hamrin, & Dietz, 1995). Curşeu, Schruijer, and Boroş (2007) and Curşeu and Sari 

(2013) postulated that gender variety has a positive outcome on group cognitive complexity 

and that mixed-gender groups achieve better results. However, as gender diversity can also be 

differentiated as gender separation and gender disparity, negative influences on group 

effectiveness may have taken place. Thus, several negative influences on collaborative 

learning may have played a role within in our instant research, where membership in a group 

was formed randomly. Despite our extensive teacher scenarios and comprehensive briefing of 

the teachers, these factors can explain, in combination with the strong impact of the way 

learning paths are visually presented, why the collaborative conditions underperform within 

this research. Given the importance of the female presence within STEM, further research 

should try to overcome these negative influences on collaborative learning. 



19 

 

Finally, our research reveals the same contradictory findings concerning gender differences as 

stated in the meta-analysis of Voyer and Voyer (2014): females seem to score differently than 

expected (or even underperform) on achievement tests, while research shows persistently that 

females outperform males in actual school performance (i.e., school marks) regardless of the 

material studied. According to the authors, a possible explanation can be found in the way 

research is generally designed, and more specifically, the fact that the particular achievement 

tests used in the studies are not based on teacher marks. The authors also refer to Lindberg et 

al. (2010), who reported that male advantages on achievement tests increase with age, with a 

peak in high school, but decline for college and adult learners. This helps explain inconsistent 

findings in gender scores. 

All findings discussed above lead to the conclusion that, although we tried to fill in the gap in 

research about the design and implementation of learning paths with respect to gender within 

the STEM field, several areas need to be improved and should be further researched. 

Limitations  

This quasi-experimental study took place in computer classes, involving 360 secondary 

school students. The fact that the study was performed in a regular school setting is 

advantageous for the ecological validity; however, there are some limitations. 

Despite of all the advantages an authentic context has to offer, it also leads to uncontrolled 

and unexpected incidents. For instance, we asked teachers to refrain from any form of 

evaluation between the pre-test and the retention test, but due to a monthly evaluation system 

within the participating schools, teachers could not keep to this condition between the post-

test and the retention test. As a result, we had to limit our focus to the pre- and post-test 

differences. 

Another limitation was the unbalanced number of students across conditions, more 

specifically, within the collaborative condition of the MGL learning path (see Table 1). Due 

to a long-term illness, one teacher cancelled her participation; another teacher was fired. 

Given the last-minute character of these events, we were not able to recruit new teachers or to 

redistribute the teachers over conditions.  

Third, within our research, complete randomization of students to conditions was not possible. 

As a result, complete classes were assigned to conditions. In this situation, multilevel analysis 

is the only appropriate statistical method, as ignoring group level (measurement occasions 

within students within classes within schools) would lead to overlooking the importance of 

group effects, and thus, violate the independence assumption (Nezlek, 2008). However, we 

would also like to note that the random assignment of individuals to particular conditions is 

sometimes impossible, impractical, or even unethical (Weathington, Cunningham & Pittenger, 

2010).  

Last, our results on collaborative learning indicate that follow-up research could benefit from 

more detailed information (Resta & Laferrière, 2007) on group composition of students (e.g., 

number of students within each group, same-sex vs. mixed-sex groups). Other aspects of 
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collaboration that need to be more closely studied are the degree of experience of our 

stakeholders and the interaction between the teacher and the students. 

Conclusions 

Within this large-scale research, empirical evidence supported the importance of the actual 

design of a learning path and the impact of a collaborative versus individual learning setting 

on learning outcomes. 

The importance of this study consists of, amongst others, (1) the implementation of learning 

paths, (2) in an LMS environment, (3) within the context of a STEM course, (4) involving 360 

secondary school students and their teachers. This type of research is not only scarce (Kay & 

Knaack, 2008; De Smet & Schellens, 2009), but above all, important in a digitalizing world 

where the need for STEM education can be heard loud and clear within all levels of society.  

Given the latest trends in online education and the focus on personalized learning and 

adaptive instruction; the initiatives undertaken in these fields by private grant-making 

foundations like the Bill and Melinda Gates Foundation to fill the education gap (e.g., their 

Adaptive Learning Market Acceleration Program, 2014), the rise of sophisticated adaptive 

learning software and platforms like Knewton (Time, 2013), and the partnerships between 

learning content publishers (e.g., Pearson, Sanoma Learning Solution) and software 

companies (e.g., Microsoft), we believe our research on learning paths can be an asset to help 

shape the future of learning and education. 
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Annex  

Table 4. Multilevel parameter estimates for the four-level analyses of learning outcomes. 

 

 

Note. Reference information on parameters and standard errors for Model 0 and Model 1 are 

in parentheses. M = male; F = female; Ind = individual; Col = collaborative; TSPW = Text, 

Schemes, Pictures and Web-based exercises learning path; and MGL = Mayer GuideLines 

learning path. 

* p<.05 **p<.01 *** p<.001 

 

 


